The Pittsburgh Housing eCounselor: Using Information Technology and Management Science to Help Housing Choice Voucher Program Participants Choose Better Homes and Communities

Michael P. Johnson
H. John Heinz III School of Public Policy and Management
Carnegie Mellon University
Pittsburgh, PA
johnson2@andrew.cmu.edu

Poster Session
Association of Public Policy Analysis and Management Fall National Conference
Dallas, Texas
November 9, 2002

All material in this presentation is © 2002 Michael P. Johnson
Project Overview

Vision:
Design, implement and evaluate a Web-based decision support system for housing counseling assistance under the Housing Choice Voucher Program (“Section 8”)

Goal:
Develop a prototype SDSS in collaboration with the Housing Authority of the City of Pittsburgh, and solicit user reactions to application

Motivation:
– Conventional supply-side perspective regarding availability of affordable housing ignores capacity of low-income families to navigate the private rental housing market
– Limited capacity of public housing authorities to implement insights of Moving to Opportunity housing mobility experiment

Deliverables:
– Website with administrative, “how-to” data on housing search, ability to browse spatial and housing unit data
– PC-based decision support proof-of-concept
– PHA client and housing specialist interview results
– PHA Administrator and housing specialist reactions to prototype

Previous related work:
– Analysis of Impediments to Fair Housing, City of Pittsburgh (Martin, Johnson and Williams Foster 2000) and Allegheny County (Martin and Johnson 1999)
Observation: Available Section 8 Units are Disproportionately Concentrated in High Section 8-Incidence and Higher-Crime Neighborhoods of Pittsburgh, PA

To varying degrees, housing mobility experiments such as Gautreaux and MTO have emphasized supply-side strategies, and found that demand-side client capabilities evolve over time. But policy trends towards “choice” and “personal responsibility”, and limited PHA resources for intensive client support argue for a demand-side strategy complemented by a supply-side strategy.
Insights from Literature Reviews and Current Practices

- Gap between evaluation outcomes for housing mobility and methods for implementation
- Social science has not addressed housing search characteristics and needs of low-income families
- MS/OR has not developed models and applications for low-income housing search
- PHA needs consistent with housing search assistance, but resources, knowledge lacking
- Available applications for housing search focused on needs of private-market users with clear preferences

Opportunity for multi-disciplinary research that leverages best social science to design public-sector e-commerce solutions that integrate information technology, management science and practitioner experience
Housing Specialist Interview Results

- Do not provide intensive search assistance to families
- Saw themselves as case managers (650 cases/year on average)
- Majority of time spent on recertification forms, phone calls and mail
- Familiarity with basic PC tasks: data entry, Web, email, word processing
- Expressed desire to explain the benefits and opportunities of Section 8
- Only one out of five were familiar with HACP Web-based unit listings
- General endorsement of supply-side strategy

Spatial decision support system must address housing specialist productivity, landlord outreach, and must include extensive hands-on training.
Counselors must assist affirmative relocation decisions as well as monitor conformity to program rules
Client Interview Results

<table>
<thead>
<tr>
<th>Gender (N=28)</th>
<th>Educational attainment (N=19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 20 (71%) Female</td>
<td>- 4 (21.05%) Some High School</td>
</tr>
<tr>
<td>- 8 (29%) Male</td>
<td>- 6 (31.58%) High School Graduate</td>
</tr>
<tr>
<td>- 9 (47.37%) Some College</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Race/Ethnicity (N=28)</th>
<th>Employment Status (N=28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 25 (89%) African-American</td>
<td>- 7 (25%) Work Full-Time</td>
</tr>
<tr>
<td>- 3 (11%) White</td>
<td>- 2 (7.14%) Work Part-Time</td>
</tr>
<tr>
<td></td>
<td>- 6 (21.43%) Unemployed/Seeking Work</td>
</tr>
<tr>
<td></td>
<td>- 11 (39.29%) Not Employed/Other</td>
</tr>
<tr>
<td></td>
<td>- 2 (7.14%) Retired</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Household Composition (N=28)</th>
<th>Relocation status (N=28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 12 (43%) Families with Children</td>
<td>- 8 (28.57%) Have recently moved using Section 8</td>
</tr>
<tr>
<td>- 16 (57%) Families without Children</td>
<td>- 19 (67.85%) Looking to move to a new apartment using Section 8</td>
</tr>
<tr>
<td></td>
<td>- 1 (3.6%) Unsuccessfully attempted to use Section 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respondents’ age distribution</th>
<th>Main reason for moving (N=27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 18-24 (1; 3.6%)</td>
<td>- 13 (48.15%) Dissatisfied with apartment quality</td>
</tr>
<tr>
<td>- 25-29 (2; 7.1%)</td>
<td>- 6 (21.43%) Dissatisfied with neighborhood quality</td>
</tr>
<tr>
<td>- 30-34 (1; 3.6%)</td>
<td>- 6 (21.43%) Both</td>
</tr>
<tr>
<td>- 35-44 (8; 28.6%)</td>
<td>- 2 (7.40%) None/Neither</td>
</tr>
<tr>
<td>- 45-49 (4; 14.3%)</td>
<td></td>
</tr>
<tr>
<td>- 50-64 (10; 35.72%)</td>
<td></td>
</tr>
<tr>
<td>- 65 & older (2; 7.1%)</td>
<td></td>
</tr>
</tbody>
</table>

- Difficulty finding good-quality housing in acceptable neighborhoods
- Dissatisfaction with the quality and quantity of housing search assistance provided by HACP
- Most have access to computers, open to possibility of using IT in housing search;
- Little difficulty with spatial or tabular data analysis; except those with limited literacy skills

Clients have motivation, cognitive skills and flexibility to use spatial decision support system productively

November 9, 2002

APPAM Fall 2002 Poster Presentation © 2002 Michael P. Johnson
Spatial Data

Spatial data enable users to:
 – Understand geographic context of housing search
 – Clarify search goals based on neighborhood characteristics
 – Select potential destinations based on aggregate data or local amenities

Requires client and housing specialist to work together:
 – What are the goals of the housing search?
 – What neighborhood attributes are important to meeting these goals?
 – How do neighborhoods vary across these attributes?
 – What “cutoff values” distinguish “acceptable” from “unacceptable” neighborhoods?

Data types:

Inter-neighborhood analysis:
 • Zip codes
 • Census tracts
 • Pittsburgh neighborhoods/suburban municipalities
 • Pittsburgh neighborhoods/suburban school districts
 • Mass transit accessibility regions

Intra-neighborhood analysis:
 • Points (amenities)
 • Streets and transit routes
 • Property parcels
Decision Support for Housing Search

- **Problem Structuring**
 - Value-focused thinking
 - Ends goals: what life goals are most important to the family
 - Means goals: neighborhood/housing unit attributes that are associated with ends goals

- **Problem Definition**
 - Spatial and relational data analysis
 - Use spatial data to identify important *neighborhood attributes*, e.g. Crime rate, education quality, housing complaints, ...
 - Use relational data to identify important *housing unit attributes*, e.g. Inspection status, contract rent, # bedrooms, ...
 - Spatial and relational data selection
 - User-defined thresholds for attributes generate a subset of alternatives
 - Desirable neighborhoods, via spatial overlay
 - Desirable housing units, via SQL Select

- **Problem Solution**
 - Rank alternatives using multi-criteria decision models:
 - “Basic” (Elimination by Aspects (SQL Order By); Holsapple and Whinston [1996])
 - “Advanced” (PROMETHEE; Brans and Vincke [1985])
 - Refine sorted list of alternatives:
 - Users may generate an ordered list of “desirable” landlord-provided housing units in “acceptable” neighborhoods
Application Architecture

Destination selection/ranking functionality currently in separate desktop application; goal is to integrate it into website
Client Component: How to Choose a Neighborhood/Housing Unit

Application tools: HTML, JavaScript
Client Component: Search Neighborhoods

Application tools: ESRI ArcIMS 4.0, HTML version, no customization
Client Component: Search Housing Units

Application tools: Active Server Pages with JavaScript, Microsoft Access
Landlord/Property Owner Component: Listings Maintenance
Client Component: Select and Rank Neighborhoods

Application tools:
ESRI ArcView/Avenue 3.2 (selection);
Java/HTML (ranking)
Evaluation and Development Path

User Reactions:

- **HCVP administrators**
 - See application as consistent with PHA goals:
 - Maximize lease-up rate
 - Maximize landlord satisfaction
 - Minimize neighborhood opposition
 - Maximize beneficial client outcomes
 - View application as competitive advantage for PHA

- **HCVP housing counselors**
 - Concerned that application will encourage clients to choose suburbs over central city
 - Maximize likelihood of success by incorporating measures of housing availability
 - Require means to visualize tradeoffs between attributes

Next Steps:

Short-term:
- More sophisticated analysis of client interview results
- Trial use of prototype by clients and housing specialists
- Development standards for professional-quality, fully Web-enabled SDSS

Medium-term:
- Evaluate alternative MCDMs and decision strategies using actual housing clients
- Redesign application to fully-integrate GIS, MCDM and caseload management

Long-term:
- Install beta version of application in HACP’s Section 8 Department for evaluation
- Application evaluation: user satisfaction, workflow impacts, family outcomes
- Cost-benefit analysis, policy recommendations